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a b s t r a c t 

This paper addresses the synchronization of nonlinear drive and response systems under input satura- 

tion and subject to input time-delay. In considering generalized forms of the systems, their dynamics 

are assumed to satisfy the one-sided Lipschitz condition along with the quadratic inner-boundedness 

rather than the conventional Lipschitz condition. Further, the time-delays are handled by applica- 

tion of the delay-range-dependent methodology, rather than the delay-dependent one, utilizable for 

both short and long time-delays. Synchronization controller designs are provided by application of the 

Lyapunov–Krasovskii functional, local sector condition, generalized Lipschitz continuity, quadratic inner- 

boundedness criterion and Jensen’s inequality. To the best of the authors’ knowledge, a delay-range- 

dependent synchronization control approach for the one-sided Lipscitz nonlinear systems under input 

delay and saturation constraints is studied for the first time. A convex-routine-based solution to the con- 

troller gain formulation by application of recursive nonlinear optimization using cone complementary 

linearization is also provided. The proposed methodology is validated for synchronization of modified 

Chua’s circuits under disturbances by considering the input delay and saturation constraints. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Synchronization of complex nonlinear systems, made possi-

le by means of a feedback controller, has vast applications in

obotics, secure communications, image processing, avionics, infor-

ation processing, and biomedical networks [1–5] . The main pur-

ose of synchronization control is to establish a coherent behavior

etween the drive and response systems by applying a feedback

f the difference between the states or outputs [6–8] . Different

ontrol schemes and tools for synchronization of nonlinear sys-

ems have been realized: Nonetheless, selection of a synchroniza-

ion controller and type of control methodology depend on the cir-

umstances and actual environment, which often vary from case

o case. For instance, adaptive controllers are used for adaptation

f wide-ranging unknown parameters, as seen in [9] . Robust con-

rollers, meanwhile, are applicable to fast-varying changes and per-

urbations, as demonstrated in [10] . Constrained controllers are

mployed to deal with input, state or output restraints such as
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aturation. Likewise, consensus controllers are designed to deal

ith specific communication and network protocols (see [11,12] ).

utput and state feedback controllers are employed according to

he availability of states and outputs. Observer-based controllers

re preferable to attain the advantages of the state feedback ap-

roaches when the states are unknown [13] . Disturbance-observer-

ased controllers are utilized for adaptive cancellation of unknown

atching disturbances [14] . Controller design for effectual synchro-

ization remedy of nonlinear systems is still a thought-provoking

esearch area, especially in view of system dynamics, uncertainties,

arious constraints, and overall performance goals. 

Controllers for synchronization of nonlinear time-delay systems

re designed to utilize time-delay data such as lower and up-

er bounds, the rate of delay, and the number of delays appear-

ng in the state, input or output. Conventional controllers for syn-

hronization of nonlinear systems might not guarantee synchro-

ization, because time-delays can cause oscillations and instabil-

ty in the response of the synchronization error. Several attempts

o synthesize synchronization controllers for time-delay systems

ave been made, exclusively by employing delay-independent and

elay-dependent methods and by applying elusive delay-range-

ependent techniques. For instance, two delay-dependent syn-

hronization control methods for Lur’e systems based on delayed

http://dx.doi.org/10.1016/j.chaos.2016.04.001
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feedback via the partitioning-interval approach were developed in

[15] . Zhang et al . [16] utilized range-of-delay information to de-

velop a global synchronization methodology for complex networks

under stochastic disturbances. Fei and coauthors [17] followed the

delay-partitioning approach in studying the coherent behavior of

a complex network with interval time-varying delay coupling. Li

et al . [18] utilized a novel Lyapunov function in their evalua-

tion of a delay-range-dependent synchronization control mecha-

nism for Lur’e systems. The work in [19] achieved the synchro-

nization of chaotic systems with time-varying state delays and de-

layed nonlinear coupling between the drive and response systems.

Recently, Ma and Jing [20] developed, by means of a local sector

condition, a delay-independent state-feedback control approach for

synchronization of uncertain nonlinear systems with time-varying

state delays and input saturation. More recently, Cai and coworkers

[21] have reported delay-dependent synchronization conditions of

singularly perturbed systems with coupling delays. 

Works on the delay-range-dependent stability investigation,

control and synchronization proficiencies (owing to their utilities

for dealing with short as well as long time-delays in the state, out-

put, input or coupling between nonlinear systems) are proceeding

apace. The literature on synchronization of the nonlinear systems

using a delay-range-dependent approach by incorporating the in-

put saturation nonlinearity and time-delays, however, is deficient.

There are two major issues with the existing synchronization tech-

niques for the nonlinear time-delay systems. First, most of the

above-mentioned studies employ a conservative continuity condi-

tion like the conventional Lipschitz condition for the derivation of

the synchronization control strategies. The literature of mathemat-

ics has developed a less conservative one-sided Lipschitz condition,

which can be used to represent the Lipschitz nonlinear systems as

a specific case of the one-sided Lipschitz nonlinear systems. More-

over, the one-sided Lipschitz constant may have a smaller value

than the Lipschitz constant, which fact can be more effectively ap-

plied for derivation of the controllers to synchronize nonlinear os-

cillators with large or region dependent Lipschitz constants. Sec-

ond, the input saturation nonlinearity cannot be ignored in practi-

cal systems because an untreated saturation nonlinearity can lead

to oscillations, lags, overshoots, undershoots, performance abase-

ment, and divergence of the closed-loop system response. For syn-

chronization of the nonlinear systems under input time-delays,

dealing with the saturation consequences is a non-trivial research

dilemma owing to simultaneous considerations of the input satu-

ration and the input delay effects. 

This paper introduces controller design for synchronization of

nonlinear systems under input saturation and subject to input

time-delay varying within an interval of known lower and upper

bounds. By utilizing the Lyapunov–Krasovskii (LK) functional, one-

sided Lipschitz condition, quadratic inner-boundedness, the range

of the input delay, the limit on the derivative of the delay, the local

sector condition for input saturation and Jensen’s inequality, non-

linear matrix inequalities are derived to determine an appropriate

controller gain matrix, specifically by providing an estimate of the

region of stability in terms of synchronization error. From these

principal design conditions, novel synchronization controller de-

sign conditions for Lipschitz nonlinear systems, both for the delay-

dependent case and for the scenario of an unknown bound on

the delay-rate, are derived. Moreover, the proposed method is ex-

tended for robust synchronization of nonlinear systems under in-

put lag and saturation by considering the L 2 norm-bounded pertur-

bations in evaluating the allowable bound of the disturbance and

disturbance attenuation level at the state estimation error. 

The main contributions of the paper are summarized as fol-

lows: (i) To the best of our knowledge, delay-range-dependent syn-

chronization of the nonlinear systems under input saturation and

input delay, to deal with the practical limitations of actuators, is
ddressed for the first time. (ii) An inaugural treatment of syn-

hronization of time-delay in one-sided Lipschitz nonlinear sys-

ems is provided. Such an approach is less conservative and can

e employed to synchronize a broader class of nonlinear systems

han the conventional Lipschitz systems. (iii) An estimate of the

egion of stability in terms of the difference between initial con-

itions of the nonlinear master-slave systems under input delay

nd saturation is provided. (iv) A robust synchronization method

or time-delay nonlinear systems with one-sided Lipschitz nonlin-

arities, input delay, input saturation, and external perturbations is

xplored. In this regard, an upper bound on the L 2 norm of the

ynchronization error in terms of the initial condition and distur-

ances and the region in which the synchronization error remains

ounded are revealed. 

Additionally, a numerically tractable approach is outlined for

etermining the synchronization controller gain matrix, parame-

ers representing the ellipsoidal region of stability, and scalars to

onstitute bounds on the synchronization error by utilizing the

one complementary linearization algorithm. Finally, a numeri-

al simulation example is provided to demonstrate the effective-

ess of the proposed methodology for synchronization of input-

onstrained modified chaotic Chua’s circuits in the presence of in-

ut delays and disturbances. 

This paper is organized as follows: the drive and response sys-

ems are described in Section 2 . In Section 3 , various synchroniza-

ion controller designs for dealing with nonlinearities, delays, in-

ut saturation and disturbances are introduced. In Section 4 , sim-

lation results are provided. Concluding remarks are rendered in

ection 5 . 

Standard notation is used in this paper. A block diagonal matrix

s denoted as diag ( x 1 , x 2 , . . . , x m 

) , where x 1 , x 2 , . . . , x m 

are entries

t the corresponding diagonal blocks. L 2 norm for a vector x ∈ R n 

s represented as ‖ x ‖ 2 and the i th row of a matrix A is assigned

s A ( i ) . 〈 w, v 〉 represents the inner product between two vectors

 and v of matching dimensions. The saturation nonlinearity is

efined by �(i ) ( u (i ) ) = sgn ( u (i ) ) min ( ̄u (i ) , | u (i ) | ) for the saturation

ound given as ū (i ) > 0 . Positive definite and positive semi-definite

atrices are represented as Y > 0 and Y ≥ 0, respectively, for a

ymmetric matrix Y . 

. System description 

Consider a master (or drive) system 

d x m 

dt 
= A x m 

+ f (t, x m 

) + d 1 , 

 m 

(t) = C x m 

, (1)

here x m 

∈ R n , y m 

∈ R p and d 1 ∈ R m represent the state, output

nd disturbance vectors, respectively. A and C are constant matri-

es of appropriate dimensions, and f ( t, x m 

) ∈ R n denotes the non-

inear dynamics in the system. The slave (or response) system is

iven by 

d x s 

dt 
= A x s + f (t, x s ) + B �(u (t − τ )) + d 2 , 

 s (t) = C x s , (2)

here x s ∈ R n , y s ∈ R p , u ∈ R q and d 2 ∈ R m are the state, output,

ontrol input and disturbance to the response system, respectively,

 is the input matrix, and �( u ) is the input saturation vector-

unction. The input time-delay satisfies 

 ≤ τ1 ≤ τ (t) ≤ τ2 , (3)

˙ (t) ≤ μ. (4)

ssumption 1. The function f ( t, x m 

) satisfies the one-sided Lips-

hitz condition given as 

 f (t, x m 

) − f (t, x s ) , x m 

− x s 〉 ≤ ρ‖ 

x m 

− x s ‖ 

2 
(5)
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or a scalar ρ , and the quadratic inner-boundedness condition

iven as 

( f (t, x m 

) − f (t, x s ) ) 
T 
( f (t, x m 

) − f (t, x s ) ) 

≤ δ‖ 

x m 

− x s ‖ 

2 + σ 〈 x m 

− x s , f (t, x m 

) − f (t, x s ) 〉 (6) 

or scalars δ and σ . 

Both the one-sided Lipschitz condition and the quadratic inner-

oundedness inequality have been employed to construct ob-

ervers and controllers for a broader class of nonlinear systems rel-

tive to the Lipschitz continuity [22–26] . The one-sided Lipschitz

nd quadratic inner-boundedness conditions are the supersets of

he conventional Lipschitz condition. Moreover, the conditions in

 3 ) and ( 4 ) are less conservative even for the Lipschitz nonlinear

ystems as addressed in [22–26] . Therefore, the present work ex-

lores a synchronization controller design method for the general-

zed class of systems. 

Defining the synchronization error e = x m 

− x s , ( 1 ) and ( 2 ) im-

lies 

de 

dt 
= Ae + f (t, x m 

) − f (t, x s ) − B �(u (t − τ )) + d 1 − d 2 , 

hich, by application of �(u ) = u − �(u ) and d = d 1 − d 2 , further

eveals 

de 

dt 
= Ae + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) − Bu (t − τ ) + d. 

(7) 

For the dead-zone function �( u ), the sector condition 

T (u (t − τ )) W [ w (t − τ ) − �(u (t − τ )) ] ≥ 0 (8)

s satisfied for a diagonal positive-definite matrix W (see [27,28] )

f, for an auxiliary defined vector w ∈ R q , the region given by 

( ̄u ) = 

{
w ∈ R 

m , − ū (i ) ≤ u (i ) (t − τ ) − w (i ) (t − τ ) ≤ ū (i ) 

}
(9) 

emains valid for the saturation limit ū . 

. Controller synthesis 

The proposed controller for synchronization of ( 1 )and ( 2 ) is

iven by 

 (t) = Ke (t) , (10)

or an appropriate controller gain matrix K . The overall closed-loop

ystem by considering the drive system ( 1 ), response system ( 2 ),

nd the proposed controller ( 10 ) is shown in Fig. 1 . The drive and

he response systems are under external disturbances d 1 and d 2 ,

espectively. The synchronization error state vector is computed via

quation e = x m 

− x s and then sent as a feedback to the proposed

ontroller ( 10 ). The control signal is computed via u (t) = Ke (t)

nd assigned to the response system, which undergoes the satu-

ation nonlinearity and the input delay, inherently present in the

esponse system. The aim of the present study is to compute the

ontroller gain matrix K for synchronization of the drive and the

esponse systems subject to the input saturation and time-varying

nknown input time-delay τ ( t ) in the absence or in the presence

f the disturbances. 


1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�1 −P BK Z 1 0 (−ν1 + σν2 

∗ �2 Z 2 Z 2 0 

∗ ∗ −Q 1 − Z 1 − Z 2 0 0 

∗ ∗ ∗ −Q 2 − Z 2 0 

∗ ∗ ∗ ∗ −ν2 I 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
By fixing w (t − τ ) = Je (t − τ ) for an auxiliary matrix J of

atching dimensions, we obtain 

T (u (t − τ )) W [ Je (t − τ ) − �(u (t − τ )) ] ≥ 0 , (11)

( ̄u ) = 

{
w ∈ R 

m , − ū (i ) ≤
(
K (i ) − J (i ) 

)
e (t − τ ) ≤ ū (i ) 

}
. (12) 

pplication of ( 7 ) and ( 10 ) obtains 

de 

dt 
= Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d. 

(13) 

or positive definite matrices P, Q 1 , Q 2 , Q 3 , Z 1 and Z 2 , we define an

K functional ( [19,23] , and [29] ) as 

 (t, e ) = e T (t) P e (t) + 

2 ∑ 

i =1 

∫ t 

t−τi 

e T (θ ) Q i e (θ ) dθ

+ 

∫ t 

t −τ (t ) 
e T (θ ) Q 3 e (θ ) dθ + τ1 

∫ 0 

−τ1 

∫ t 

t+ s 
˙ e T (θ ) Z 1 ̇ e (θ ) d θd s 

+ τ21 

∫ −τ1 

−τ2 

∫ t 

t+ s 
˙ e T (θ ) Z 2 ̇ e (θ ) d θd s. (14) 

 sufficient condition for synchronization of the master-slave sys-

ems given by ( 1 ) and ( 2 ) using the delayed controller ( 10 ) under

he input saturation constraint is provided in the form of the fol-

owing theorem. 

heorem 1. Consider the drive and response systems ( 1 ) and ( 2 ) un-

er delayed and saturated control signal �(u (t − τ )) satisfying the

ime-delay properties ( 3 ) and ( 4 ), d(t) = 0 , and Assumption 1. Sup-

ose that there exist matrices K and J, symmetric matrices P, Q 1 , Q 2 ,

 3 , Z 1 and Z 2 , diagonal matrix W and scalars υ1 and υ2 such that

he inequalities 

 > 0 , Q 1 > 0 , Q 2 > 0 , Q 3 > 0 , Z 1 > 0 , Z 2 > 0 , 

 > 0 , υ1 > 0 , υ2 > 0 , (15) 

P K 

T 
(i ) 

− J T 
(i ) 

∗ ū 

2 
(i ) 

]
≥ 0 , ∀ i = 1 , ..., m, (16)

 P B + J T W τ1 A 

T Z 1 τ21 A 

T Z 2 
0 τ21 K 

T B 

T Z 1 τ21 K 

T B 

T Z 2 
0 0 0 

0 0 0 

0 τ1 Z 1 τ21 Z 2 
−2 W τ1 B 

T Z 1 τ21 B 

T Z 2 
∗ −Z 1 0 

∗ ∗ −Z 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (17) 

re satisfied, where 

�1 = PA + A 

T P + Q 1 + Q 2 + Q 3 − Z 1 + (ρν1 + δν2 ) I, 
�2 = −(1 − μ1 ) Q 3 − 2 Z 2 , 
τ21 = τ2 − τ1 . 

Then, for all initial conditions holding for region V (ϑ, x m 

(ϑ) −
 s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] , the synchronization error defined

y e (t) = x m 

(t) − x s (t) converges to the origin asymptotically. 

roof. The time derivative of V ( t, e ) is given by 

˙ 
 (t, e ) = e T (t) P (Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) 

+ B �(u (t − τ )) + d) + (Ae − BKe (t − τ ) + f (t, x m 

) 

− f (t, x s ) + B �(u (t − τ )) + d) P e (t) 

−
2 ∑ 

i =1 

e T (t − τi ) Q i e (t − τi ) + 

3 ∑ 

i =1 

e T (t) Q i e (t) − (1 − μ) e T 
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Fig. 1. Closed-loop system formed by the drive and the response systems by using the proposed control strategy. 
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×(t − τ (t)) Q 3 e (t − τ (t)) + (Ae − BKe (t − τ ) 

+ f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d) T 

×( τ 2 
1 Z 1 + τ 2 

21 Z 2 ) × (Ae − BKe (t − τ ) + f (t, x m 

) 

− f (t, x s ) + B �(u (t − τ )) + d) 

−τ1 

∫ t 

t−τ1 

˙ e T (θ ) Z 1 ̇ e (θ ) dθ − τ21 

∫ t−τ1 

t−τ2 

˙ e T (θ ) Z 2 ̇ e (θ ) dθ . 

(18)

The conditions ( 5 ) and ( 6 ) for positive scalars ν1 and ν2 are

rewritten as 

ν1 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) ≤ ρν1 e 
T ( t) e ( t) , (19)

ν2 ( f (t, x m 

) − f (t, x s ) ) 
T 
( f (t, x m 

) − f (t, x s ) ) 

≤ δν2 e 
T (t) e (t) + σν2 e 

T (t) ( f (t, x m 

) − f (t, x s ) ) . (20)

According to ( 4 ), ( 18 ), ( 19 ) and ( 20 ), this implies that 

˙ 
 (t, e ) 

≤ e T (t) P(Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d) 

+(Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d) 

Pe (t) −
2 ∑ 

i =1 

e T (t − τi ) Q i e (t − τi ) + 

3 ∑ 

i =1 

e T (t ) Q i e (t ) 

−(1 − μ) e T (t − τ (t)) Q 3 e (t − τ (t)) + ( Ae − BKe (t − τ ) 

+ f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 
T 
(
τ 2 

1 Z 1 + τ 2 
21 Z 2 

)
×( Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 

−τ1 

∫ t 

t−τ1 

˙ e T (θ ) Z 1 ̇ e (θ ) dθ − τ21 

∫ t−τ1 

t−τ2 

˙ e T (θ ) Z 2 ̇ e (θ ) dθ

−ν1 e 
T (t)( f (t, x m 

) − f (t, x s ) ) + ρν1 e 
T (t) e (t) − ν2 ( f (t, x m 

) 

− f (t, x s ) ) 
T 
( f (t, x m 

) − f (t, x s ) ) + δν2 e 
T (t) e (t) 

+ σν2 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) . (21)

Incorporation of ( 11 ) obtains 

˙ 
 (t, e ) 

≤ e T (t) P(Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) 

+ d) + (Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) 

+ d) Pe (t) −
2 ∑ 

i =1 

e T (t − τi ) Q i e (t − τi ) + 

3 ∑ 

i =1 

e T (t ) Q i e (t ) 

−(1 − μ) e T (t − τ (t)) Q 3 e (t − τ (t)) + ( Ae − BKe (t − τ ) 

+ f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 
T 
(
τ 2 

1 Z 1 + τ 2 
21 Z 2 

)
×( Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 

−τ1 

∫ t 

t−τ
˙ e T (θ ) Z 1 ̇ e (θ ) dθ − τ21 

∫ t−τ1 

t−τ
˙ e T (θ ) Z 2 ̇ e (θ ) dθ
1 2 
−ν1 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) + ρν1 e 
T ( t) e ( t) − ν2 ( f (t, x m 

) 

− f (t, x s ) ) 
T 
( f (t, x m 

) − f (t, x s ) ) + δν2 e 
T (t) e (t) 

+ σν2 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) + �T ( u ( t − τ )) W Je ( t − τ ) 

−2 �T (u (t − τ )) W �(u (t − τ )) + e T (t − τ ) J T W �(u (t − τ )) . 

(22)

y virtue of Jensen’s inequality, then, we have 

τ1 

∫ t 

t−τ1 

˙ e T (θ ) Z 1 ̇ e (θ ) dθ ≤ −( e (t) 

−e (t − τ1 ) ) 
T 

Z 1 ( e (t) − e (t − τ1 ) ) , (23)

τ2 1 

∫ t−τ1 

t−τ2 

˙ e T (θ ) Z 2 ̇ e (θ ) dθ

≤ −( e ( t − τ (t) ) − e (t − τ2 ) ) 
T 

Z 2 ( e ( t − τ (t) ) − e (t − τ2 ) ) 

−( e (t − τ1 ) − e ( t − τ (t) ) ) 
T 

Z 2 ( e (t − τ1 ) − e ( t − τ (t) ) ) . (24)

And from ( 22 ) to ( 24 ), it follows that 

˙ 
 (t, e ) 

≤ e T (t) P (Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) 

+ d) + (Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) 

+ d) P e (t) −
2 ∑ 

i =1 

e T (t − τi ) Q i e (t − τi ) + 

3 ∑ 

i =1 

e T (t ) Q i e (t ) 

−(1 − μ) e T (t − τ (t)) Q 3 e (t − τ (t)) + ( Ae − BKe (t − τ ) 

+ f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 
T 
(
τ 2 

1 Z 1 + τ 2 
21 Z 2 

)
×( Ae − BKe (t − τ ) + f (t, x m 

) − f (t, x s ) + B �(u (t − τ )) + d ) 

−( e (t) − e (t − τ1 ) ) 
T 

Z 1 ( e (t) − e (t − τ1 ) ) − ( e ( t − τ (t) ) 

−e (t − τ2 ) ) 
T × Z 2 ( e ( t − τ (t) ) − e (t − τ2 ) ) − ( e (t − τ1 ) 

−e ( t − τ (t) ) ) 
T 

Z 2 × ( e (t − τ1 ) − e ( t − τ (t) ) ) 

−ν1 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) + ρν1 e 
T ( t) e ( t) 

−ν2 ( f (t, x m 

) − f (t, x s ) ) 
T 
( f (t, x m 

) − f (t, x s ) ) + δν2 e 
T (t) e (t) 

+ σν2 e 
T (t) ( f (t, x m 

) − f (t, x s ) ) + �T ( u ( t − τ )) W Je ( t − τ ) 

−2 �T (u (t − τ )) W �(u (t − τ )) + e T (t − τ ) J T W �(u (t − τ )) , 

(25)

his further produces 

˙ 
 (e, t) ≤ ξ T 

1 
1 ξ1 , (26)
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[
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t

e

t

P  
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T

 

1  

c  

c  

s  

r

T  

d  

t  

e  

d

Y

H

[
 

H +
0
0

0
0

−2

∗
∗
∗

a

x  

Q  

Y  

c  

d

P  

u  

r  

Q  

H  

a

−ν1 

I  

[  

e

T 
1 = 

[
e (t) 

T 
e T ( t − τ (t) ) e T (t − τ1 ) 

e T (t − τ2 ) f T (t, x m 

) − f T (t, x s ) �T (u (t − τ )) 
]
, (27) 

2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

�1 −P BK Z 1 0 (−ν
∗ −(1 − μ1 ) Q 3 − 2 Z 2 Z 2 Z 2 
∗ ∗ −Q 1 − Z 1 − Z 2 0 

∗ ∗ ∗ −Q 2 − Z 2 
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

+ 

[
A BK 0 0 I B 

]T (
τ 2 

1 Z 1 + τ 2 
21 Z 2 

)[
A BK 0 0 I B

or d(t) = 0 . To attain the asymptotic stability of the synchroniza-

ion error system ( 13 ), the condition 

˙ V (e, t) < 0 , which can be at-

ained through the constraint 
2 < 0, must hold. Then, the in-

quality ( 17 ) in Theorem 1 is achieved by application of the Schur

omplement to 
2 < 0. 

For initial conditions bounded by V (0, e (0)) ≤ 1, we have V ( t,

 ) ≤ 1, because ˙ V (t, e ) < 0 . V ( t, e ) ≤ 1 implies e T ( t ) Pe ( t ) ≤ 1.

n addition, the initial condition V (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 implies

hat e T ( ϑ) Pe ( ϑ) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] . Combining the con-

traints e T ( t ) Pe ( t ) ≤ 1 and e T ( ϑ) Pe ( ϑ) ≤ 1 for t ≥ 0 and for ϑ ∈
 −τ (t) 0 ] , respectively, we obtain the region e T (t − τ ) Pe (t −
) ≤ 1 . By including the ellipsoidal region e T (t − τ ) Pe (t − τ ) ≤ 1 in

he sector S( ̄u ) given by ( 12 ), we obtain 

 

T (t − τ ) P e (t − τ ) ≥ ū 

2 
(i ) e 

T (t − τ ) 
(
K (i ) − J (i ) 

)T 

×
(
K (i ) − J (i ) 

)
e (t − τ ) , ∀ i = 1 , . . . , m, (29) 

his implies the inequality 

 − ū 

2 
(i ) 

(
K 

T 
(i ) − J T (i ) 

)(
K (i ) − J (i ) 

)
≥ 0 , ∀ i = 1 , . . . , m. (30)

pplying the Schur complement, we attain the inequality ( 16 ) in

heorem 1 , which completes the proof. �

The constrained synchronization control approach in Theorem

 requires an a priori guess of the matrices K and J , and therefore

annot be applied to determine the controller gain matrix through

onvex routines. Alternatively then, in Theorem 2 , we provide a

ufficient condition for controlled synchronization of the drive and

esponse systems that exhibit this feature. 


3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�3 −BX 

˜ Z 1 0 (−ν1 + σν2 ) Y + I B

∗ �4 
˜ Z 2 ˜ Z 2 0 

∗ ∗ �5 0 0 

∗ ∗ ∗ − ˜ Q 2 − ˜ Z 2 0 

∗ ∗ ∗ ∗ −ν2 I 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�3 + (ρν1 + δν2 ) Y 
2 −BX 

˜ Z 1 0 (

∗ �4 
˜ Z 2 ˜ Z 2 

∗ ∗ �5 0 

∗ ∗ ∗ − ˜ Q 2 − ˜ Z 2 
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
ν2 ) I + P P B + J T W 

0 0 

0 0 

0 0 

ν2 I 0 

∗ −2 W 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(28) 

heorem 2. Consider the drive and response systems ( 1 ) and ( 2 ) un-

er delayed and saturated control signal �(u (t − τ )) satisfying the

ime-delay properties ( 3 )-( 4 ) and Assumption 1. Suppose that there

xist matrices X and M, symmetric matrices ˜ Q 1 , ˜ Q 2 , ˜ Q 3 , ˜ Z 1 , and ˜ Z 2 , a

iagonal matrix H and scalars υ1 and υ2 such that the inequalities 

 > 0 , ˜ Q 1 > 0 , ˜ Q 2 > 0 , ˜ Q 3 > 0 , ˜ Z 1 > 0 , ˜ Z 2 > 0 , 

 > 0 , υ1 > 0 , υ2 > 0 , (31) 

Y X 

T 
(i ) 

− M 

T 
(i ) 

∗ ū 

2 
(i ) 

]
≥ 0 , ∀ i = 1 , . . . , m, (32)

 M 

T τ1 Y A 

T τ21 Y A 

T 
√ | ρν1 + δν2 | Y 

 τ1 X 

T B 

T τ21 X 

T B 

T 0 

 0 0 0 

 0 0 0 

 τ1 I τ21 I 0 

 H τ1 H 

T B 

T τ21 H 

T B 

T 0 

−Y ̃  Z −1 
1 

Y 0 0 

∗ −Y ̃  Z −1 
1 

Y 0 

∗ ∗ −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (33) 

re satisfied, where 

�3 = AY + Y A 

T + 

˜ Q 1 + 

˜ Q 2 + 

˜ Q 3 − ˜ Z 1 , 

�4 = −(1 − μ1 ) ̃  Q 3 − 2 ̃

 Z 2 , 

�5 = − ˜ Q 1 − ˜ Z 1 − ˜ Z 2 . 

Then, for all initial conditions holding for region V (ϑ, x m 

(ϑ) −
 s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] with P = Y −1 , Q 1 = Y −1 ˜ Q 1 Y 

−1 ,

 2 = Y −1 ˜ Q 2 Y 
−1 , Q 3 = Y −1 ˜ Q 3 Y 

−1 , Z 1 = Y −1 ˜ Z 1 Y 
−1 and Z 2 =

 

−1 ˜ Z 2 Y 
−1 , the synchronization error defined by e (t) = x m 

(t) − x s (t)

onverges to the origin asymptotically. The gain matrices can be

etermined by K = X Y −1 and J = M Y −1 . 

roof. Applying the congruence transformation to ( 16 ) and ( 17 )

sing diag ( P −1 , I) and diag ( P −1 , P −1 , P −1 , P −1 , I, W 

−1 , Z −1 , Z −1 ) ,

espectively, and substituting Y = P −1 , ˜ Q 1 = P −1 Q 1 P 
−1 ,

˜ 
 2 = P −1 Q 2 P 

−1 , ˜ Q 3 = P −1 Q 3 P 
−1 , ˜ Z 1 = P −1 Z 1 P 

−1 , ˜ Z 2 = P −1 Z 2 P 
−1 ,

 = W 

−1 , X = KY and M = JY , we obtain the constraints in ( 32 )

nd 

+ σν2 ) Y + I BH + M 

T τ1 Y A 

T τ21 Y A 

T 

0 0 τ1 X 

T B 

T τ21 X 

T B 

T 

0 0 0 0 

0 0 0 0 

−ν2 I 0 τ1 I τ21 I 

∗ −2 H τ1 H 

T B 

T τ21 H 

T B 

T 

∗ ∗ −Y ̃  Z −1 
1 

Y 0 

∗ ∗ ∗ −Y ̃  Z −1 
1 

Y 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 . (34) 

ncorporating (ρν1 + δν2 ) Y 
2 ≤ | ρν1 + δν2 | Y 2 as used in Cai et al .

24] and applying the Schur complement to the resultant, the in-

quality ( 33 ) is obtained, which ends the proof. �
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0 

−I 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Remark 1. Synchronization of nonlinear systems with either the

one-sided Lipschitz nonlinearities [25] or the input saturation con-

straint [28] is lacking in the literature. Theorems 1 and 2 pro-

vide synchronization investigation methodologies for a given con-

troller gain matrix and synchronization controller synthesis ap-

proach, respectively, by considering one-sided Lipschitz, quadratic

inner-boundedness and local sector conditions. Synchronization of

the chaotic systems by simultaneous exploitation of the one-sided

Lipschitz condition and the practical input saturation limitation has

not been fully addressed in the relevant previous studies. 

Remark 2. Another contribution of the present work is the con-

sideration of the input time-delay in addition to the input satu-

ration nonlinearity for formulation of the synchronization condi-

tions in Theorems 1 and 2 . Incorporation of the input delay com-

plicates controller design, because the input saturation is already a

complex nonlinearity, and control signal must consider, simultane-

ously, constraints arising from delay and saturation. Since �( u ( t ))

is a specific case of �(u (t − τ )) for τ = 0 , delayed nonlinearities

such as �(u (t − τ )) are always difficult to deal with, compared

with non-delayed ones. 

Remark 3. It should be noted that the input delay is exploited in

the present work using the delay-range-dependent paradigm re-

garding variations in delay, rather than the traditionalistic delay-

dependent methods. The delay-range-dependent methodologies al-

low interval time-delays with any finite zero or nonzero lower

bound, whereas for delay-dependent methods, the lower bound is

fixed to zero. 

By taking ν1 = 0 , ν2 = 1 , σ = 0 , and λ = 

√ 

δ, where λ is the Lip-

chitz constant for f ( t, x ), the following corollary is straightforwardly

obtained from Theorem 2. 

Corollary 1. Consider the drive and response systems ( 1 ) and ( 2 ) un-

der delayed and saturated control signal �(u (t − τ )) satisfying the

time-delay properties ( 3 ), ( 4 ) and ( 6 ) for σ = 0 . Suppose that there

exist matrices X and M, symmetric matrices ˜ Q 1 , ˜ Q 2 , ˜ Q 3 , ˜ Z 1 , and ˜ Z 2 ,

and a diagonal matrix H such that inequalities ( 32 ), 

 > 0 , ˜ Q 1 > 0 , ˜ Q 2 > 0 , ˜ Q 3 > 0 , ˜ Z 1 > 0 , ˜ Z 2 > 0 , H > 0 , (35)

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�3 −BX 

˜ Z 1 0 I BH + M 

T τ1 Y A 

T τ21 Y A 

T 

∗ �4 
˜ Z 2 ˜ Z 2 0 0 τ1 X 

T B 

T τ21 X 

T B 

T 

∗ ∗ �5 0 0 0 0 0 

∗ ∗ ∗ − ˜ Q 2 − ˜ Z 2 0 0 0 0 

∗ ∗ ∗ ∗ −I 0 τ1 I τ21 I 

∗ ∗ ∗ ∗ ∗ −2 H τ1 H 

T B 

T τ21 H 

T B 

T 

∗ ∗ ∗ ∗ ∗ ∗ −Y ̃  Z −1 
1 

Y 0 

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y ̃  Z −1 
1 

Y 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

are satisfied. Then, for all initial conditions holding for region

 (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] with P = Y −1 ,

Q 1 = Y −1 ˜ Q 1 Y 
−1 , Q 2 = Y −1 ˜ Q 2 Y 

−1 , Q 3 = Y −1 ˜ Q 3 Y 
−1 , Z 1 = Y −1 ˜ Z 1 Y 

−1 

and Z 2 = Y −1 ˜ Z 2 Y 
−1 , the synchronization error defined by e (t) =

x m 

(t) − x s (t) converges to the origin asymptotically. The gain matri-

ces can be determined by K = X Y −1 and J = M Y −1 . 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�6 −BX + 

˜ Z 2 0 (−ν1 + σν2 ) Y + 

∗ �7 
˜ Z 2 0 

∗ ∗ − ˜ Q 2 − ˜ Z 2 0 

∗ ∗ ∗ −ν2 I 

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
 

 

 

 

 

 

 

 

 

 

 

 

< 0 (36)

emark 4. Corollary 1 is deduced from Theorem 2 by setting

1 = 0 , ν2 = 1 , σ = 0 , and λ = 

√ 

δ for synchronization of Lipschitz

onlinear systems ( 1 ) and ( 2 ). Nevertheless, the methodology in

heorem 2 , providing a controlled synchronization remedy for one-

ided Lipschitz nonlinear systems, considers a more generic sce-

ario. However, the approach in Corollary 1 is novel, as it consid-

rs the input time-delay, unlike the existing works [20] and [28] on

ynchronization of nonlinear systems under input saturation. 

By substituting τ1 = 0 , we conclude the following corollary. 

orollary 2. Consider the drive and response systems ( 1 ) and ( 2 ) un-

er delayed and saturated control signal �(u (t − τ )) satisfying the

ime-delay properties ( 3 ) and ( 4 ) with τ1 = 0 and Assumption 1. Sup-

ose that there exist matrices X and M, symmetric matrices ˜ Q 2 , ˜ Q 3 ,

nd ˜ Z 2 , a diagonal matrix H and scalars υ1 and υ2 such that inequal-

ties ( 32 ), 

 > 0 , ˜ Q 2 > 0 , ˜ Q 3 > 0 , ˜ Z 2 > 0 , V > 0 , υ1 > 0 , υ2 > 0 , (37)

 + M 

T τ21 Y A 

T 
√ | ρν1 + δν2 | Y 

0 τ21 X 

T B 

T 0 

0 0 0 

0 τ21 I 0 

−2 H τ21 H 

T B 

T 0 

∗ −Y ̃  Z −1 
2 

Y 0 

∗ ∗ −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (38)

re satisfied, where 

�6 = AY + Y A 

T + 

˜ Q 2 + 

˜ Q 3 − ˜ Z 2 , 

�7 = −(1 − μ1 ) ̃  Q 3 − 2 ̃

 Z 2 . 

Then, for all initial conditions holding for region V (ϑ, x m 

(ϑ) −
 s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] with P = Y −1 , Q 1 = 0 , Q 2 =
 

−1 ˜ Q 2 Y 
−1 , Q 3 = Y −1 ˜ Q 3 Y 

−1 , Z 1 = 0 and Z 2 = Y −1 ˜ Z 2 Y 
−1 , the synchro-

ization error defined by e (t) = x m 

(t) − x s (t) converges to the origin

symptotically. The gain matrices can be determined by K = X Y −1 and

 = M Y −1 . 

emark 5. In Corollary 2 , delay-dependent controller design con-

idering 0 ≤ τ ( t ) ≤ τ 2 is derived from the approach in Theorem

 . Whereas the existing preliminary results in [20] on the syn-

hronization of nonlinear systems under input saturation are based

n delay-independent stability criteria, the proposed method in

orollary 2 is established using a relatively less conservative delay-

ependent treatment. Additionally, Corollary 2 , in contrast to [20] ,

onsiders the input delay case, which presents greater difficulty for

ontroller design owing to the necessary consideration of delayed

aturation nonlinearity. 

For Q 3 = 0 in ( 14 ), the following corollary is obtained. 

orollary 3. Consider the drive and response systems ( 1 ) and ( 2 ) un-

er delayed and saturated control signal �(u (t − τ )) of unknown

elay-rate satisfying the time-delay property ( 3 ) and Assumption 1.

uppose that there exist matrices X and M, symmetric matrices ˜ Q ,
1 
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Q  

i

Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 A 

T 

 

T B 

T 
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T B 

T 

 

 

−1 
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�
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t  

K
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t  

C  

r  
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i
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d  
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t  

Z  

(

η  

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 

0 

0 

0 

0 

0 

0 

−γ
∗
∗
∗

a  

V  

Q

a  

r  

t

 

(  

 

(i  

P  

f

V  

V  . 

I  

c  

i  

[  

i  

V  

L  

V  

t  

M  

γ  

o  

o

1  

t  

w  

d  

(

V  

ξ

˜ 
 2 , ˜ Z 1 , and ˜ Z 2 , a diagonal matrix H and scalars υ1 and υ2 such that

nequalities ( 32 ), 

 > 0 , ˜ Q 1 > 0 , ˜ Q 2 > 0 , ˜ Z 1 > 0 , ˜ Z 2 > 0 , H > 0 , υ1 > 0 , υ2 > 0 , 

(39) 

 

 

 

 

 

 

 

 

 

 

 

 

�8 −BX 

˜ Z 1 0 (−ν1 + σν2 ) Y + I BH + M 

T τ1 Y

∗ −2 ̃

 Z 2 ˜ Z 2 ˜ Z 2 0 0 τ1 X
∗ ∗ �5 0 0 0 0

∗ ∗ ∗ − ˜ Q 2 − ˜ Z 2 0 0 0
∗ ∗ ∗ ∗ −ν2 I 0 τ1

∗ ∗ ∗ ∗ ∗ −2 H τ1 H

∗ ∗ ∗ ∗ ∗ ∗ −Y ̃Z

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

re satisfied, where 

8 = AY + Y A 

T + 

˜ Q 1 + 

˜ Q 2 − ˜ Z 1 . 

Then, for all initial conditions holding for region V (ϑ, x m 

(ϑ) −
 s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] with P = Y −1 , Q 1 = Y −1 ˜ Q 1 Y 

−1 ,

 2 = Y −1 ˜ Q 2 Y 
−1 , Q 3 = 0 , Z 1 = Y −1 ˜ Z 1 Y 

−1 and Z 2 = Y −1 ˜ Z 2 Y 
−1 , the

ynchronization error defined by e (t) = x m 

(t) − x s (t) converges to

he origin asymptotically. The gain matrices can be determined by

 = X Y −1 and J = M Y −1 . 

emark 6. It is difficult to identify the parameter μ if a priori

nowledge of the rate of delay is not available. In such cases,

he control methodologies provided in Theorems 1 and 2 and

orollaries 1 and 2 are inapplicable. Corollary 3 therefore is de-

ived as a special case of the approach in Theorem 2 , and can be

pplied to deal with the unknown delay derivative information. 

A sufficient condition for a synchronization controller design

hat is robust against disturbances and perturbations is provided

n the following theorem. 

heorem 3. Consider the drive and response systems ( 1 ) and ( 2 ) un-

er delayed and saturated control signal �(u (t − τ )) satisfying the

ime-delay properties ( 3 ) and ( 4 ) and Assumption 1. Suppose that

here exist matrices X and M, symmetric matrices ˜ Q 1 , ˜ Q 2 , ˜ Q 3 , ˜ Z 1 , and
˜ 
 2 , a diagonal matrix H and scalars υ1 and υ2 such that inequalities

 31 ) 

> 0 , γ > 0 , 

[
Y X 

T 
(i ) 

− M 

T 
(i ) 

∗ ηū 

2 
(i ) 

]
≥ 0 , ∀ i = 1 , ..., m, (41)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�3 −BX 

˜ Z 1 0 (−ν1 + σν2 ) Y + I BH + M 

T I 

∗ �4 
˜ Z 2 ˜ Z 2 0 0 0 

∗ ∗ �5 0 0 0 0 

∗ ∗ ∗ − ˜ Q 2 − ˜ Z 2 0 0 0 

∗ ∗ ∗ ∗ −ν2 I 0 0 

∗ ∗ ∗ ∗ ∗ −2 H 0 

∗ ∗ ∗ ∗ ∗ ∗ −γ I 
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

re satisfied. Then, for all initial conditions holding for region

 (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 for all ϑ ∈ [ −τ (t) 0 ] with P = Y −1 ,

 1 = Y −1 ˜ Q 1 Y 
−1 , Q 2 = Y −1 ˜ Q 2 Y 

−1 , Q 3 = Y −1 ˜ Q 3 Y 
−1 , Z 1 = Y −1 ˜ Z 1 Y 

−1 

nd Z 2 = Y −1 ˜ Z 2 Y 
−1 , the synchronization error e (t) = x m 

(t) − x s (t)

emains bounded within the region ηe T (t − τ ) Y −1 e (t − τ ) ≤ 1 , and

he following holds: 

(i) the synchronization error e (t) = x m 

(t) − x s (t) converges to the

origin asymptotically, if d(t) = 0 ; 
τ21 Y A 

T 
√ | ρν1 + δν2 | Y 

τ21 X 

T B 

T 0 

0 0 

0 0 

τ21 I 0 

τ21 H 

T B 

T 0 

0 0 

−Y ̃  Z −1 
1 

Y 0 

∗ −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (40) 

τ1 Y A 

T τ21 Y A 

T 
√ | ρν1 + δν2 | Y 

τ1 X 

T B 

T τ21 X 

T B 

T 0 

0 0 0 

0 0 0 

τ1 I τ21 I 0 

τ1 H 

T B 

T τ21 H 

T B 

T 0 

0 0 0 

I 0 0 0 

−Y ̃  Z −1 
1 

Y 0 0 

∗ −Y ̃  Z −1 
1 

Y 0 

∗ ∗ −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (42) 

ii) the synchronization error e (t) = x m 

(t) − x s (t) satisfies

‖ e (t) ‖ 2 2 < γ 2 ‖ d‖ 2 2 + γV (0 , e (0)) , if ‖ d(t) ‖ 2 2 < ς 

−1 , where

ς = γ / ( η−1 − 1) . 

ii) The gain matrices can be determined by K = X Y −1 and J = M Y −1 .

roof. To achieve robustness against disturbances, we employ the

ollowing inequality 

˙ 
 (t, e ) + γ −1 e T (t ) e (t ) − γ d T (t ) d(t ) < 0 . (43)

Integrating the constraint from 0 to T , we obtain 

 (T , e (T )) −V (0 , e (0)) + γ −1 

T ∫ 
0 

e T (t) e (t) dt −γ

T ∫ 
0 

d T (t) d(t) dt < 0

(44) 

f d(t) = 0 , ( 43 ) ensures asymptotic convergence of the syn-

hronization error e ( t ) to zero, owing to ˙ V (t, e ) < 0 , for all

nitial conditions validating V (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 under ϑ ∈
 −τ (t) 0 ] . Further, ˙ V (t, e ) < 0 and V (ϑ , x m 

(ϑ ) − x s (ϑ)) ≤ 1

mply e T (t − τ ) Pe (t − τ ) ≤ 1 . If ‖ d(t) ‖ 2 
2 

< ς 

−1 , ( 44 ) entails

 (t, e ) < 1 + γ ς 

−1 under V (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 . For the

K functional ( 14 ), we have e T (t) Pe (t) ≤ 1 + γ ς 

−1 , which for

 (ϑ, x m 

(ϑ) − x s (ϑ)) ≤ 1 with ϑ ∈ [ −τ (t) 0 ] implies that

he ellipsoidal region (1 + γ ς 

−1 ) −1 e T (t − τ ) Pe (t − τ ) ≤ 1 holds.

oreover, the synchronization error satisfies 
∫ T 

0 e T (t) e (t) dt <
2 
∫ T 

0 d T (t) d(t) dt + γV (0 , e (0)) for all time, and minimization

f γ reduces the effects of disturbances and initial conditions

n the synchronization error. Note that e T (t − τ ) Pe (t − τ ) ≤
 ⊂ (1 + γ ς 

−1 ) −1 e T (t − τ ) Pe (t − τ ) ≤ 1 holds as 1 + γ ς 

−1 > 1 ;

herefore, the synchronization error e ( t ) always remains bounded

ithin the region ηe T (t − τ ) Y −1 e (t − τ ) ≤ 1 either d(t) = 0 , or the

isturbance is bounded as ‖ d(t) ‖ 2 2 < ς 

−1 . Incorporating ( 25 ) into

 43 ) obtains 

˙ 
 (t, e ) + γ −1 e T (t ) e (t ) − γ d T (t ) d(t ) ≤ ξ T 

2 
3 ξ2 , (45)

T 
1 = 

[
e (t) 

T 
e T ( t − τ (t) ) e T (t − τ1 ) e T (t − τ2 ) 

f T (t, x m 

) − f T (t, x s ) �T (u (t − τ )) d T (t) 
]
, (46) 
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Fig. 2. Behavior of the drive and response modified Chua’s circuits with zero control input: (a) response of the master system, (b) response of the slave system, (c) synchro- 

nization errors between the drive and response circuits. 

(−ν1 + σν2 ) I + P P B + J T W P 
0 0 0 

0 0 0 

 2 0 0 0 

−ν2 I 0 0 

∗ −2 W 0 

∗ ∗ −γ I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 0 0 I B I 
]
. (47) 

 

 P B + J T W P I τ1 A 

T Z 1 τ21 A 

T Z 2 
0 0 0 τ21 K 

T B 

T Z 1 τ21 K 

T B 

T Z 2 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 τ1 Z 1 τ21 Z 2 
−2 W 0 0 τ1 B 

T Z 1 τ21 B 

T Z 2 
∗ −γ I 0 0 0 

∗ ∗ −γ I 0 0 

∗ ∗ ∗ −Z 1 0 

∗ ∗ ∗ ∗ −Z 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 . (48) 

3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�1 + γ −1 I −P BK Z 1 0 

∗ −(1 − μ1 ) Q 3 − 2 Z 2 Z 2 Z 2 
∗ ∗ −Q 1 − Z 1 − Z 2 0 

∗ ∗ ∗ −Q 2 − Z
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

+ 

[
A BK 0 0 I B I 

]T (
τ 2 

1 Z 1 + τ 2 
21 Z 2 

)[
A BK

Condition ( 43 ) holds for 
3 < 0. Applying two successive Schur

complements to the matrix inequality 
3 < 0 produces 


4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�1 −P BK Z 1 0 (−ν1 + σν2 ) I + P

∗ �2 Z 2 Z 2 0 

∗ ∗ −Q 1 − Z 1 − Z 2 0 0 

∗ ∗ ∗ −Q 2 − Z 2 0 

∗ ∗ ∗ ∗ −ν2 I 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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Fig. 3. Behavior of the drive and response modified Chua’s circuits with the proposed controller: (a) response of the master system, (b) response of the slave system, (c) 

synchronization errors between the drive and response circuits. 
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Applying the congruence transformation by diag ( P −1 , P −1 ,

 

−1 , P −1 , I, W 

−1 , I, I, Z −1 , Z −1 ) , using ρν1 + δν2 ≤ | ρν1 + δν2 | , ap-

lying the Schur complement, and utilizing the aforementioned

ubstitutions, we obtain the inequality ( 42 ) in Theorem 3 , whereas

 41 ) is obtained by including region ηe T (t − τ ) Y −1 e (t − τ ) ≤ 1 in

( ̄u ) . �

emark 7. An extension to Theorem 2 is provided in Theorem 3 in

rder to achieve robust synchronization of two nonlinear or chaotic

ystems under external disturbances in addition to the input time-

elay and actuator saturation. The approach provided in Theorem

 can be used to synchronize systems that are sensitive to pertur-

ations. For instance, secure communications using synchroniza-

ion of chaos cannot be attained using the controller obtained from

heorem 2 , due to the highly sensitive nature of the chaotic oscil-

ators. In point of fact, disturbances and perturbations can result

n non-synchronous responses of two nonlinear systems; therefore,

heorem 3 can be applied to attain the desired robustness against

erturbations when synthesizing a synchronization controller. 

The constraints provided in Theorems 2 and 3 are nonlinear;

owever, they can be resolved by means of convex routines that

onvert the nonlinear constraints into linear constraints with a

onlinear objective function for optimization. For instance, the

onstraints in Theorem 3 are written in an equivalent form as 

in trace 

(
P Y + Y 1 ̄Y 1 + Y 2 ̄Y 2 + Z 1 ̄Z 1 + Z 2 ̄Z 2 + 

˜ Z 1 N 1 + 

˜ Z 2 N 2 

+ ̄Z 1 ̄Y 1 ̃  Z 1 ̄Y 1 + Z̄ 2 ̄Y 2 ̃  Z 2 ̄Y 2 + Z 1 Y 1 N 1 Y 1 + Z 2 Y 2 N 2 Y 2 

)
subject to(31) , (41) , (42) ∗, (49) 
P I 
∗ Y 

]
≥ 0 , 

[
Y i I 

∗ Ȳ i 

]
≥ 0 , 

[
Z i I 

∗ Z̄ i 

]
≥ 0 , 

[
N i I 

∗ ˜ Z i 

]
≥ 0 , (50)

Z̄ i Y i 
∗ ˜ Z i 

]
≥ 0 , 

[
Z i Ȳ i 
∗ N i 

]
≥ 0 , i = 1 , 2 , (51)

here ( 42 ) ∗ in ( 49 ) represents ( 42 ) by substituting Z̄ 1 = Y ̃  Z −1 
1 

Y and

¯
 2 = Y ̃  Z −1 

2 
Y . The constraints in ( 50 ) along with the nonlinear term,

iven by P Y + Y 1 ̄Y 1 + Y 2 ̄Y 2 + Z 1 ̄Z 1 + Z 2 ̄Z 2 + 

˜ Z 1 N 1 + 

˜ Z 2 N 2 , in the ob-

ective function are employed to ensure P = Y −1 , Ȳ i = Y −1 
i 

, Z̄ i = Z −1 
i 

,

˜ 
 i = N 

−1 
i 

, while the constraints in ( 51 ) along with the nonlinear

erm Z̄ 1 ̄Y 1 ̃  Z 1 ̄Y 1 + Z̄ 2 ̄Y 2 ̃  Z 2 ̄Y 2 + Z 1 Y 1 N 1 Y 1 + Z 2 Y 2 N 2 Y 2 of the objective

unction reveal that Z̄ 1 ̄Y 1 ̃  Z 1 ̄Y 1 = Z̄ 2 ̄Y 2 ̃  Z 2 ̄Y 2 = Z 1 Y 1 N 1 Y 1 = Z 2 Y 2 N 2 Y 2 = I

see [23] ). By application of the cone complementary lineariza-

ion algorithm, the above-mentioned nonlinear optimization can

e solved for given positive scalars ν1 and ν2 using the convex

outines in [23] and [30] . 

. Simulation results 

Chua’s circuit has various applications in secure communica-

ions, chaos investigation, oscillation analysis and neuronal behav-

or study owing to its utility in representing a wide range of dy-

amical behaviors (see [19] and references therein). We consider a

odified Chua’s circuit model containing cubic nonlinearity, which

s more difficult to handle than the conventional Chua’s circuit

ontaining absolute nonlinearity. 
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Fig. 4. Effects of disturbances on synchronization errors between the drive and response circuits. 
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The model of the modified Chua’s circuit, as seen in [31] and

references therein, is given by 

A = 

[ 

10 / 7 10 0 

1 −1 1 

0 −100 / 7 0 

] 

, f (t, x ) = 

[ −(20 / 7) x 3 1 

0 

0 

] 

, 

B = 

[ 

1 0 0 

0 1 0 

0 0 1 

] 

. (52)

First, we show that the function f ( t, x ) satisfies the one-sided Lips-

chitz condition globally. Evaluating the left side of ( 5 ) obtains 

〈 f (t, x m 

) − f (t, x s ) , x m 

− x s 〉 = (20 / 7) 
[
x m 1 x s 1 

(
x 2 m 

+ x 2 s 

)
− x 4 m 

− x 4 s 

]
(53)

As we already know that 

x m 1 x s 1 = 0 . 5 

(
x 2 m 1 + x 2 s 1 

)
− 0 . 5 ( x m 1 − x s 1 ) 

2 
, (54)

it reveals, by application of ( 53 ), that 

〈 f (t, x m 

) − f (t, x s ) , x m 

− x s 〉 ≤ 0 . (55)

Hence, the function f ( t, x ) satisfies the one-sided Lipschitz continu-

ity globally with ρ = 0 . To compute the constants of the quadratic

inner-boundedness, the supremum of the maximum eigenvalues of

( ∂ f ( t, x )/ ∂ x ) T ( ∂ f ( t, x )/ ∂ x ) for region x 1 ∈ [ −1 1 ] is numerically

calculated as 73.47. Therefore, we can select δ = 73 . 47 and σ = 0 .

We can expect a 3–9 ms input delay due to the conduction of

current through wires; consequently, τ1 = 3 ms and τ2 = 9 ms are

fixed. The input saturation limits are taken as ū = [ 5 5 5 ] T .

The controller gain and the L 2 performance index for μ = 0 . 2 are

obtained as 

K = 

[ 

19 . 11 7 . 79 1 . 53 

6 . 71 22 . 42 −6 . 43 

1 . 65 −8 . 67 16 . 45 

] 

, γ = 9 . 15 , (56)

by solving the constraints in Theorem 3 . The open-loop responses

of the modified Chua’s circuits are demonstrated in Fig. 2 . Phase

portraits of the master and slave systems and plots of the synchro-

nization errors, depicting the chaotic and non-synchronous behav-
ors of the drive and response circuits, are shown in Figs. 2 (a), 1 (b)

nd (c). 

By application of the proposed controller, the above-noted re-

ponses and synchronization errors are plotted in Fig. 3 (a), (b) and

c). In Fig. 3 (c), it is observed that the proposed controller synchro-

izes all of the states of the master-slave modified Chua’s circuits

n the absence of disturbances. 

To evaluate the robustness of the proposed approach, the dis-

urbances are taken as 

d 11 = 0 . 59 sin 350 t, 

d 12 = 0 . 3 sin 400 t, 

d 13 = 0 . 72 sin 370 t, 

d 21 = 0 . 59 sin 290 t, 

 22 = 0 . 3 sin 300 t, 

 23 = 0 . 72 sin 270 t. (57)

Synchronization error plots by application of the proposed ro-

ust controller for a time-varying delay of 5 − 0 . 5 sin 0 . 002 t (in ms)

re provided in Fig. 4 , which shows that all of the synchronization

rrors e 1 , e 2 and e 3 are converging in the presence of disturbance.

n summary, synchronization of complex nonlinear drive and re-

ponse systems under interval time-delays, input saturation and

isturbances can be precisely obtained by means of the proposed

ontrol methods. 

. Conclusions 

The present study formulated novel control strategies for the

ynchronization of nonlinear drive and response systems subjected

o input delay and saturation. To deal with the delay, a delay-

ange-dependent methodology utilizing the LK functional and al-

owing for time-varying interval delays was employed. Input satu-

ation was treated using the local sector condition, through which

ocal synchronization schemes were developed that guarantee the

egional stability of the synchronization error. Further, to con-

ider a control scheme applicable to a wide class of systems, the
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oncepts of one-sided Lipschitz continuity and quadratic inner-

oundedness were applied, which are generalized forms of the Lip-

chitz continuity. Moreover, the robustness of the proposed syn-

hronization controller against disturbances was ensured by means

f L 2 stability analysis. The proposed methodology was successfully

ested for synchronization of modified chaotic Chua’s circuits un-

er input time-varying delay, input saturation and disturbances. 
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